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Brigitte Deguin:$ and Pierre Vogel* disappearance of diedevere measured at different temperatures

and for various concentrations and excesses of $fey follow
; : ; the law dpJ/dt = k*°{1][SO,]? — k-°°{2][SO,] at 198 K for
DepartamenS)nSjeer(gi?;%adr—ésgiaeé/oAgaﬂgg% concentrations of SOvarying between 0.92 and 11.2 molar.
Principado de Asturias Spain Under conditions wherk_,°{2][SO,] is negligible,k,*°{SO,]*:
Section de Chimie de I'Upersitede Lausanne  (5.05% 1.0)10°% (5.7 4 0.5)107 (1.38+ 0.12)10°% (3.33+
BCH, CH-1015 Lausanne-Dorigny Switzerland 0-20)10%, and (9.44 0.1)10°° min* for [SO,] = 0.92, 2.97,
4.3,7.1, and 11.2 molar (errer2%), respectively, were obtained.
Receied July 20, 1998 In the gas phase, S@enerates a dimer with a binding energy

] ] . amounting to ca. 3 kcal/mét. One can thus admit mechanism
Simple 1,3-dienes add to $@ the presence of acid catalysts  (g)

to generate the corresponding 3,6-dihydro-1,2-oxathiin-2-oxides
(sultines} at low temperature. This observation led us to invent K, k,
a new carbor-carbon bond forming reaction in which electron- 1+280G,5=—=1+(S0),<—=2+ S0, (@)
rich dienes are condensed with electron-rich alkenes giving ! 2
sulfinic acids that undergo stereoselective retro-ene elimination ) ] ) )
of SO,. Polypropionate fragments containing three contiguous Alternatl\(ely, since butad'len.e is known to form a van der Waals
stereogenic centers and or®-alkenic unit can be generated in ~ complex with SQ@ with a binding energy of 3.24- 0.48 kcal/
a one-pot procedureWe now report that both the well-known — Mol*? we cannot exclude mechanism (b)
cheletropic additioh(giving sulfolenes) and the hetero-Diels
Alder addition of SQ to 1,3-dienes are promoted by Sitself
as suggested by ab initio quantum calculations and demonstrated
by the order of the rate-laws of these reactions.

Although the dipole moment of S@u = 1.63 D} is relatively The rate law for (a) is dJ/dt = kK[SO[1] — k J[SO,][2]
small, it is a good Lewis acid that associatgs s:trongly with anions and for (b) dpJ/dt = K,K'[SOJ1] — K_5[SO.][2] with K =
and, therefore, promotes heterolysishe binding enthalpy of ka/k_1, K" = K'/K _1, K, k_1, K1 andK _; larger thark, or K, (rate-

the charge-transfer complex M¢"SO,~ (1 = 4.95 D) amounts  qetermining steps). Our data are consistent with both mechanisms
to ca. 12 kcal/mol in heptarfdt is therefore possible that a second (a) and (b).

molecule of SQcan intervene in the transition states of the hetero- ~ e rates of formation of sulfoler@were measured at 261.2
Diels—Alder additions and stabilize them in such a way that g 55 3 function of S@ concentration. They followed the rate
compensates for the unfavorable entropy term. On comparing rate;,,, d[3)idt = keP{1][SO? with kJSO* = (11.67 +
constants of the additions of ethylenetetracarbonitrile to various 0.12)103, (14.07 + 0.07)103, (18.53 + 0.34)1073, (70.9 +
dienes| 1,2-dimethylidenecyclohexang)(was expected to be one 1.4)10°3, (110.7+ 2.9)1073, (110.1+ 3.3)10°3, and (174.9+
of the most reactive 2,3-dialkyldiene in a Diel&lder cycload- 3.8)10°3 min~* for [SO,] = 2.66, 3.19, 4.68, 9.55, 12.64, 13.02
dition.® Indeed,1° added to S@readily at 187 K without catalyst, and 15.16 M (error<2%), re,spectilvely. ,Thus,, mecﬁanismsl

genergting sulpine nearly quantitatively, the structure of which analogous to (a) and (b) can be retained for the cheletropic
was given by its'H and**C NMR spectra. At this temperature  ,4dition1 + SO, = 3.

and below 223 K, the sulfoler@was not observed. Above 253~ ap initio calculations were carried out to explore the model

K, only 3% was formed, with sultine2 undergoing complete  eactions between 1,3-butadiene and, 8&(yive the correspond-
cycloreversion td and SQ. Rates of formation o2 and of the ing sultine and sulfolene. Geometry optimizations were performed

K, K,
1+2S0,%=(1'SO) + SO, =2+S0,  (b)
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Table 1. Energies (Related to Reactants in kcal/mol) Corresponding to the Transition Structut} Batddiene+ SO, and (2) Butadienet
2SO Reactions (DA: Diels-Alder, Che: Cheletropic)

reaction ~ ZPVE  MP2/6-31G* MP2/6-31G* SCFRe(= 13.3) MP2/6-313G(3df,2p)  QCISD(T)/6-31G*  G2(MP2,SVP)

(1)*(DA); 2.3 17.8 17.7 14.5 20.6 19.2
*(Che), 2.2 19.6 19.0 11.7 25.0 19.0
(DAY 2.7 11.8 13.1 8.4 14.4 13.4 (7%8)
#(DA) 20 2.6 14.0 15.4

*(Che)a 2.4 14.8 16.3 6.4 20.1 13.8 (122)
*(Che)p 2.4 15.1 16.3

a2 Zero point vibrational energies (ZPVE) were computed at the HF/6-31G* level of the@BVE calculated, were scaled by 0.8509 (DeFees,
D. J.; McLean, A. DJ. Chem. Phys1985 82, 333) to compute G2(MP2,SVP) valuésComputed activation energies using Bab a Lewis acid
catalyst in parentheses (butadieheSO, + BH3).

Figure 1. MP2/6-31G* optimized structures corresponding to two

transition structures(DA)a, F(DA)2p] for the hetero-Diels-Alder reaction

of 1,3-butadienet- 2SQ,. Figure 2. MP2/6-31G* optimized structures corresponding to two
transition structurest(Che),,, ¥(Che),p] for the cheletropic reaction of

means of Onsager model reaction field calculations as imple- 1,3-butadienet 2SQ.

mented in GAUSSIAN 942 structures involving two molecules of $@\ccording to expecta-
Since the thermodynamic aspects of this reaction have beentions, the (MP2/6-31G*) dipole moments of such transition

discussed elsewheté,we focus here on the kinetic aspects. structures reduce to 2.37 B(DA).4 and 2.25 D {(Che).4 as a

Besides the transition structures corresponding to the addition of consequence of the presence of a second molecule ef SO

$(Che)za #(Che)as

one molecule of sulfur dioxide'(DA),: Diels—Alder, *(Che);: Solvation calculations predict a moderate destabilization consistent
cheletropic}® two new transition structures for the hetero-Diels  with such a reductio®’

Alder reaction f(DA).s, F(DA)2p, See Figure 1)] and two new As it can be seen in Table 1, the lowering of energy barriers
transition structures for the related cheletropic additi¢@He),a, due to the presence of a second molecule of BQransition

*(Che)2p; see Figure 2)], both involving two molecules of SO  structures is remarkable when compared with the catalytic action
were located and characterized. Table 1 collects the energeticof a Lewis acid catalysg

results [G2(MP2,SV) energies were only computed for transition
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